首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2409篇
  免费   165篇
  国内免费   1篇
  2023年   6篇
  2022年   10篇
  2021年   39篇
  2020年   25篇
  2019年   41篇
  2018年   43篇
  2017年   48篇
  2016年   60篇
  2015年   111篇
  2014年   142篇
  2013年   151篇
  2012年   223篇
  2011年   197篇
  2010年   139篇
  2009年   103篇
  2008年   149篇
  2007年   116篇
  2006年   131篇
  2005年   137篇
  2004年   121篇
  2003年   108篇
  2002年   77篇
  2001年   56篇
  2000年   79篇
  1999年   44篇
  1998年   20篇
  1997年   13篇
  1996年   7篇
  1995年   10篇
  1994年   7篇
  1993年   17篇
  1992年   19篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   12篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   9篇
  1982年   10篇
  1981年   3篇
  1980年   8篇
  1979年   12篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
  1971年   2篇
  1969年   2篇
排序方式: 共有2575条查询结果,搜索用时 18 毫秒
101.
Baek SH  Bae YS  Seo JK  Lee YH  Kim JH  Kwun KB  Suh PG  Ryu SH 《Life sciences》1999,65(17):1845-1856
Trp-Lys-Tyr-Met-Val-Met (WKYMVM) is a novel potent peptide which can stimulate phosphoinositide hydrolysis in U937 as well as U266 and HL-60 cells (Baek et al., J. Biol. Chem. 271, 8170 (1996)). The peptide also induces superoxide generation in human neutrophils (Seo et al., J. Immunol. 158, 1896 (1997)). However, the signaling pathway down-stream of PLC set in motion by the peptide is not yet completely understood. We studied the signaling pathway of the peptide with the goal of elucidating the mechanism of the peptide's action. WKYMVM induced a rapid and transient activation of the ERKs in human histiocytic lymphoma cells, U937. The ERK1 activation peaked at 5 min and returned to the basal level after 30 min. The ERK1 stimulation by the peptide was partially inhibited by pretreatment of the cells with pertussis toxin (PTX), implicating G-protein involvement in the peptide's action. Pretreatment of staurosporine, protein kinase C (PKC) inhibitor, or PKC down-regulating PMA had no impact on the ERK1 activation by the peptide, indicating that the signaling pathway is independent of PKC activation. Pretreatment of the cells with neomycin and intracellular Ca2+ mobilizing reagents had also no effect on the ERK1 activation by the peptide. However, pretreatment with wortmannin or LY294002, the inhibitor of phosphatidylinositol 3 kinase (PI-3K), strongly inhibited peptide-stimulated ERK1 activation. Our results suggest that PI-3K may be an important participant in the ERK cascade induced by the peptide. Furthermore, the treatment of U937 cells with the peptide activated p74Raf-1, an upstream kinase of ERK. Taken together, our results suggest that the peptide activate ERK via a G-protein/PI-3K/Ras/Raf-1 mediated signaling pathway in U937 cells.  相似文献   
102.
Peptides derived from gp41 effectively block the gp41-mediated cell fusion or HIV infection. A 36-mer (naDP178), 51-mer (C51) and 27-mer peptide (C27) from the membrane proximal region of gp41 have been examined their interaction modes with the coiled-coil motif of gp41 presented in thioredoxin (Trx-N) or the bacterially expressed ectodomain of gp41 (Ec-gp41ec). All of these peptides effectively inhibited the gp41-mediated membrane fusion, however, they showed distinct interaction modes with Ec-gp41ec or Trx-N. C51 peptide bound tightly to Trx-N, and it increased the solubility of Ec-gp41ec. naDP178 showed very weak binding affinity to Trx-N, however, it effectively solubilized Ec-gp41ec. In contrast, C27 peptide showed significant binding to Trx-N; however, it did not affect the solubility of Ec-gp41ec. These interaction modes of C-peptides were assumed to be related to their different inhibitory mechanism against gp41-mediated cell fusion.  相似文献   
103.
Y Kim  J M Han  J B Park  S D Lee  Y S Oh  C Chung  T G Lee  J H Kim  S K Park  J S Yoo  P G Suh  S H Ryu 《Biochemistry》1999,38(32):10344-10351
Protein kinase C (PKC) is an important regulator of phospholipase D1 (PLD1). Currently there is some controversy about a phosphorylation-dependent or -independent mechanism of the activation of PLD1 by PKC. To solve this problem, we examined whether PLD1 is phosphorylated by PKC in vivo. For the first time, we have now identified multiple basal phophopeptides and multiple phorbol myristate acetate (PMA) induced phosphopeptides of endogenous PLD1 in 3Y1 cells as well as of transiently expressed PLD1 in COS-7 cells. Down regulation or inhibition of PKC greatly attenuated the PMA-induced phosphorylation as well as the activation of PLD1. In the presence of PMA, purified PLD1 from rat brain was also found to be phosphorylated by PKCalpha in vitro at multiple sites generating seven distinct tryptic phosphopeptides. Four phosphopeptides generated in vivo and in vitro correlated well with each other, suggesting direct phosphorylation of PLD1 by PKCalpha in the cells. Serine 2, threonine 147, and serine 561 were identified as phosphorylation sites, and by mutation of these residues to alanine these residues were proven to be specific phosphorylation sites in vivo. Interestingly, threonine 147 is located in the PX domain and serine 561 is in the negative regulatory "loop" region of PLD1. Mutation of serine 2, threonine 147, or serine 561 significantly reduced PMA-induced PLD1 activity. These results strongly suggest that phosphorylation plays a pivotal role in PLD1 regulation in vivo.  相似文献   
104.
105.
The elucidation of the biological role of glycan is one of the most important issues to be resolved following the genome project. RNA interference is becoming an efficient reverse genetic tool for studying gene function in model organisms, including C.elegans and Drosophila melanogaster. Our molecular evolutionary study has shown that a prototype of glycosyltransferases, which synthesize a variety of glycan structures in the Golgi apparatus, was conserved between mammals and Drosophila. For analyses of the basic physiological functions of glycans, we established the Drosophila inducible RNAi knockdown system and applied it to one glycosyltransferase and one transporter, proteoglycan UDP-galactose: beta-xylose beta1,4galactosyltransferase I and the PAPS-transporter, respectively. If on the silencing of each gene induced ubiquitously under the control of a cytoplasmic actin promoter, the RNAi knockdown fly died, then the protein was indispensable for life. The expression of the target gene was disrupted specifically and the degree of interference was well correlated with the phenotype. The inducible RNAi knockdown fly obtained using the GAL4-UAS system will pave the way for the functional analysis of glycans.  相似文献   
106.
The generation of reactive oxygen species (ROS) in cells stimulated with growth factors requires the activation of phosphatidylinositol 3-kinase (PI3K) and the Rac protein. We report here that the COOH-terminal region of Nox1, a protein related to gp91(phox) (Nox2) of phagocytic cells, is constitutively associated with beta Pix, a guanine nucleotide exchange factor for Rac. Both growth factor-induced ROS production and Rac1 activation were completely blocked in cells depleted of beta Pix by RNA interference. Rac1 was also shown to bind to the COOH-terminal region of Nox1 in a growth factor-dependent manner. Moreover, the depletion of Nox1 by RNA interference inhibited growth factor-induced ROS generation. These results suggest that ROS production in growth factor-stimulated cells is mediated by the sequential activation of PI3K, beta Pix, and Rac1, which then binds to Nox1 to stimulate its NADPH oxidase activity.  相似文献   
107.
The Schizosaccharomyces pombe pfh1+ gene (PIF1 homolog) encodes an essential enzyme that has both DNA helicase and ATPase activities and is implicated in lagging strand DNA processing. Mutations in the pfh1+ gene suppress a temperature-sensitive allele of cdc24+, which encodes a protein that functions with Schizosaccharomyces pombe Dna2 in Okazaki fragment processing. In this study, we describe the enzymatic properties of the Pfh1 helicase and the genetic interactions between pfh1 and cdc24, dna2, cdc27 or pol 3, all of which are involved in the Okazaki fragment metabolism. We show that a full-length Pfh1 fusion protein is active as a monomer. The helicase activity of Pfh1 displaced only short (<30 bp) duplex DNA regions efficiently in a highly distributive manner and was markedly stimulated by the presence of a replication-fork-like structure in the substrate. The temperature-sensitive phenotype of a dna2-C2 or a cdc24-M38 mutant was suppressed by pfh1-R20 (a cold-sensitive mutant allele of pfh1) and overexpression of wild-type pfh1+ abolished the ability of the pfh1 mutant alleles to suppress dna2-C2 and cdc24-M38. Purified Pfh1-R20 mutant protein displayed significantly reduced ATPase and helicase activities. These results indicate that the simultaneous loss-of-function mutations of pfh1+ and dna2+ (or cdc24+) are essential to restore the growth defect. Our genetic data indicate that the Pfh1 DNA helicase acts in concert with Cdc24 and Dna2 to process single-stranded DNA flaps generated in vivo by pol δ-mediated lagging strand displacement DNA synthesis.  相似文献   
108.
The Cdc24 protein is essential for the completion of chromosomal DNA replication in fission yeast. Although its precise role in this process is unclear, Cdc24 forms a complex with Dna2, a conserved endonuclease–helicase implicated in the removal of the RNA–DNA primer during Okazaki fragment processing. To gain further insights into Cdc24–Dna2 function, we screened for chromosomal suppressors of the temperature-sensitive cdc24-M38 allele and mapped the suppressing mutations into six complementation groups. Two of these mutations defined genes encoding the Pol3 and Cdc27 subunits of DNA polymerase δ. Sequence analysis revealed that all the suppressing mutations in Cdc27 resulted in truncation of the protein and loss of sequences that included the conserved C-terminal PCNA binding motif, previously shown to play an important role in maximizing enzyme processivity in vitro. Deletion of this motif is shown to be sufficient for suppression of both cdc24-M38 and dna2-C2, a temperature-sensitive allele of dna2+, suggesting that disruption of the interaction between Cdc27 and PCNA renders the activity of the Cdc24–Dna2 complex dispensable.  相似文献   
109.
KpnBI is a restriction-modification (R-M) system recognized in the GM236 strain of Klebsiella pneumoniae. Here, the KpnBI modification genes were cloned into a plasmid using a modification expression screening method. The modification genes that consist of both hsdM (2631 bp) and hsdS (1344 bp) genes were identified on an 8.2 kb EcoRI chromosomal fragment. These two genes overlap by one base and share the same promoter located upstream of the hsdM gene. Using recently developed plasmid R-M tests and a computer program RM Search, the DNA recognition sequence for the KpnBI enzymes was identified as a new 8 nt sequence containing one degenerate base with a 6 nt spacer, CAAANNNNNNRTCA. From Dam methylation and HindIII sensitivity tests, the methylation loci were predicted to be the italicized third adenine in the 5′ specific region and the adenine opposite the italicized thymine in the 3′ specific region. Combined with previous sequence data for hsdR, we concluded that the KpnBI system is a typical type I R-M system. The deduced amino acid sequences of the three subunits of the KpnBI system show only limited homologies (25 to 33% identity) at best, to the four previously categorized type I families (IA, IB, IC, and ID). Furthermore, their identity scores to other uncharacterized putative genome type I sequences were 53% at maximum. Therefore, we propose that KpnBI is the prototype of a new ‘type IE’ family.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号